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A C-observe REDOR experiment is described which allows A ®C-"D REDOR experiment based on a deuteriait?
“C-*D dipolar couplings to be obtained by a universal dipolar  dipolar recoupling pulse was described in a previous public
dephasing curve. Previous “C-observe REDOR experiments on  tjgn (8) and is shown in Fig. 1. Protons are used for cross
BC-?D spin pairs generally relied on numerical simulations to polarization (CP) and are subsequently decoupled by a stror
obtain the dipolar coupling. The REDOR experiment described in RF field. A train of rotor-synchronizerly-4 phasedr pulses
this article is based on a deuterium composite pulse, and the data (9) lasting for N, rotor cycles is applied to th&C channel
analysis eliminates the need for numerical simulations and is the during the dipolcar evolution periodL(). The time between
Samel a the-} traditional REDOR analysis performed on pairs of adjacentr pulses is one-half of a rotor.period The deuterium
SpEe;nVT,gféé: sé(gogs;jeg:;:;um; composite pulse. channel consi;ts qf a singlle no.minalz _pulse. During the

dipolar evolution time, the”C signal will decay fromT,
processes and will also dipolar dephase if the deuterium pul

An attractive feature of the REDOR experiment applied toi§ aPplied. TheT, decay can be taken into account by perferm
pair of spin} nuclei is the dipolar dephasing described by %9 an additional experiment which omits the deuterlum.pulse
universal dipolar dephasing curve, @). The universal dipolar Hence, for each value of the evolution time, two experiment

dephasing curve provides a simple way to obtain dipolar co@® Performed: one with the deuterium pulse and one withol
plings since it is governed solely by the dipolar interactiorin€ deuterium pulse. The ratio of these two signals is caled

However, the measurement BC—2D dipolar interactions by and theideal evolution of this normalized signal is due solely

13C_observe REDOR can be hampered by the large deuteriffifn€ dipolar interaction. , _
quadrupolar interaction. Typical radiofrequency power Ieveés For thf m/2-based REDOR experiment, the dipolar-
on multiply-tuned NMR probes are insufficient to fully exci'[eweF’t“"‘se.(Jj C magnetizations,, for a specific orientation of the
the entire spectral range associated with the broad deuteriuﬁ:l_ D dipolar vector obeysg)

powder pattern. This is especially true when there is no fast L

motional averaging of the quadrupolar interaction. While _ _ _

3C-D REDOR experiments have been performed on samples Sdl7) = g (1 + 4 COSG4T + COS Zigr). [
with large deuterium quadrupolar coupling constants, data

analysis required numerical simulations since i@ magne The dipolar evolution timer, is the product of the number of
tization decay did not obey a universal dephasing cu88(. rotor cycles,N., and the rotor periodT,. The average dipolar
Hence, it is desirable to have 2C—D REDOR experiment frequency,a,, depends on the spatial orientation of the spir
where the™C magnetization dephasing follows a universgdair and on the dipolar couplind) (in units of Hz). The
dipolar dephasing curve. Such a curve would depend only @ipolar couplingD is equal tod/27, whered = woypych/
the *C-*D dipolar interaction, would be independent of thei7r®. The average dipolar frequency for a given orientation o
chemical shift anisotropies and the deuterium quadrupolar ia-*C—*D internuclear vector iso, = 2V2D sin 28 sin «,
teraction, and would provide a straightforward method favhere « and 8 are the azimuthal and polar angles of the
obtaining dipolar couplings. A°C-°D REDOR experiment, internuclear vector with respect to the rotor frame, respectivel
based on a deuterium composite pulse, that generates qaie&). A normalized powder average of Eq. [1] provides the
obeying a universal dephasing curve is described in this Codesired universal dipolar dephased sigi$l, The solid curve
munication. in Fig. 2 showsS; as a function ofA (=N_.T.D).
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kHz amplitude deuterium pulse cannot cover the broad deut

1q ‘ Cp decouple ‘ rium powder pattern characterized by a quadrupolar couplin
constant of 167 kHz.

xyd o8 b o8 Broadband excitation and inversion deuterium pulses base

Be | CPy LS on composite pulses have been described in the literatu

- (14-18. The composite pulses have a much greater bandwid

D H than simple single-phase pulses and have found use in gen

ating undistorted deuterium quadrupolar echo spectra. Bas

rotor (l) e S B B 1OIT upon the success of such pulses, it seemed reasonable that

3C-D REDOR experiment would benefit from a composite
FIG.1. The REDOR pulse sequence. The pulse sequence is shown witd@uteriumm/2 pulse. There are many spin-1 composite pulse

ten rotor cycle dipolar evolution period. The nominal deuterium pulse flidescribed in the literature. The composit@ pulse 0.,/ 2),,

angle is§ = /2. All *C pulses following the cross-polarization (CP) pulse arghat is particularly attractive igcp(ﬂ-/z)x = 17,62,99,144,,

xy-4 phasedr pulses except for the two specifically marked with the CP pha: . _ . . .
¢. Experiments were performed with RF field amplitudes of 50 kHZ#e#*C there the nominal on-resonance flip angles are given in d

cross-polarization, 110 kHz fdH decoupling, and 48.5 kHz for tH® pulse. grees 16’ 18' This windowless sequence of pU|SeS was intro

The spinning rate was set to 3125 Hz and controlled to within 0.2 Hz. Ti#uced by Shakal®) and developed by Raleigh, Olejniczak,

experiments were performed on a homebuilt spectrometer operatingrat aand Griffin as a building block for a spin-1 broadband inver-

NMR frequency of 151 MHz and based on a Tecmag Libra pulse programmgjgp, pulse for solids. The relatively short duration of this
composite pulse is beneficial for our magic-angle spinnin
experiment.

Experiments were performed on an alanine sample prepare®REDOR experiments were performed with the aforemen
by recrystallizing 20.6 mg of [33C, 1-°D]oL-alanine (99 at.% tioned composite deuterium pulse. The raw data were corrects
"C; 98 at.%"D; Isotec, Inc.) and 406.8 mg natural-abundancgs described above and the corresponding values, afre
oL-alanine (Aldrich) from water. The quadrupolar couplinghown as closed circles in Fig. 2. The data generated wit
constant, QCC, is equal to 167 kHz for the methine deuterong)cfp(w/z)x obey the universal dephasing curve if tH€-2D
alanine (1). X-ray diffraction methods give a 2.17 A separagipolar coupling is set to 431 Hz; this dipolar coupling corre-
tion between the’C and’D labels of alanineX2). The methyl sponds to a methyl carbon to methine deuteron distance of 2..
"C resonance will contain contributions frofC spins cou A X-ray diffraction measurements give a distance of 2.17 £
pled to °D spins and from™C spins that have no deuteriumpetween the two spin labeled sites. The REDOR-measure
neighbor because of the dilution of the labeled alanine Histance is 1.4% longer than that found by X-ray diffraction,
natural-abundance alanine. Consequerfly,is not what is and this small difference is consistent with that typically found
obtained directly from analysis of the experimental spectigz REDOR measurements between pairs of spimiclei.
Instead, the measured ratioS§. Two effects caus&, andS;'  Hence, thé*C—*D REDOR experiment based on the composite
to differ. First, because of the spin dilution only a fractipof  deuteriuma/2 pulse performs very well.
°C spins have &D neighbor; this fraction can be calculated The 0,7/ 2), pulse that we have used for our REDOR

from the quantities of labeled and natural-abundance alaniggplication is known to perform poorly as a broadband exci
used to make the sample. Second, the CP dynamic$’@r

spins on deuterated alanine may differ from the CP dynamics

for °C spins on natural-abundance alanine. The differences in 1.0 g N

CP properties are not easy to calculate but will be noted by an f , ]

empirical parametee. A simple model described elsewhere 0.8+ CH3’E;CO°H*

shows thatS; and Sy’ are related by 13) 05l ?
Si=1-(1-S{le, [2] ? oaf

wherea = pe. Previous work showed that = 0.70 for this 02}

alanine sample§). N T

REDOR experiments were performed for a series of dipolar 0 05 10 15 20 25 30
evolution times on the alanine sample by applying a conven- A

tional rectangular/2 pulse to the deuterium channel. The raw FIG. 2. The ideal behavior of the dipolar dephasé@ signal onx for
data,S], were corrected according to Eq. [2] and the corrdsolated C-*D spin pairs is shown as the solid curve. The open circles
sponding values 0B, are shown as open circles in Fig 2. 1t igepresent the corrected data taken with a conventional deuteri@npulse.

. . . The closed circles represent the corrected data taken with a composite deu
clear that the REDOR data taken with a simple deuteritith rium @/2 pulse. Both sets of experimental data are plotted usiniCa’D

pulse do not follow the universal dipolar dephasing curv@polar coupling of 431 Hz. Numerical simulations described in the text are
predicted by Eq. [1]. A problem with this data is that the 48.5hown as the open triangles. The inset shows the labeled alanine.
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